Package index
- 
          
add_cross_group_stats() - Add cross-group statistics to the importance table
 
- 
          
as.caretList() - Convert object to caretList object
 
- 
          
as.caretList(<default>) - Convert object to caretList object - For Future Use
 
- 
          
as.caretList(<list>) - Convert list to caretList
 
- 
          
autoplot(<caretStack>) - Convenience function for more in-depth diagnostic plots of caretStack objects
 
- 
          
c(<caretList>) - S3 definition for concatenating caretList
 
- 
          
c(<train>) - S3 definition for concatenating train objects
 
- 
          
caretEnsemble() - Combine several predictive models via weights
 
- 
          
caretList() - Create a list of several train models from the caret package
 
- 
          
caretModelSpec() - Generate a specification for fitting a caret model
 
- 
          
caretStack() - Combine several predictive models via stacking
 
- 
          
defaultControl() - Construct a default train control for use with caretList
 
- 
          
defaultMetric() - Construct a default metric
 
- 
          
dotplot(<caretStack>) - Comparison dotplot for a caretStack object
 
- 
          
extractMetric() - Generic function to extract accuracy metrics from various model objects
 
- 
          
extractMetric(<caretList>) - Extract accuracy metrics from a 
caretListobject 
- 
          
extractMetric(<caretStack>) - Extract accuracy metrics from a 
caretStackobject 
- 
          
extractMetric(<train>) - Extract accuracy metrics from a 
trainmodel 
- 
          
greedyMSE() - Greedy optimization for MSE
 
- 
          
greedyMSE_caret() - caret interface for greedyMSE
 
- 
          
permutationImportance() - Permutation Importance
 
- 
          
plot(<caretList>) - Plot a caretList object
 
- 
          
plot(<caretStack>) - Plot a caretStack object
 
- 
          
plot_group() - Plot a group of variable importances
 
- 
          
plot_variable_importance() - Plot Variable Importance from a caretStack Model
 
- 
          
predict(<caretList>) - Create a matrix of predictions for each of the models in a caretList
 
- 
          
predict(<caretStack>) - Make predictions from a caretStack
 
- 
          
predict(<greedyMSE>) - Predict method for greedyMSE
 
- 
          
prepare_importance() - Prepare variable importance data.table from a caretStack
 
- 
          
print(<caretStack>) - Print a caretStack object
 
- 
          
print(<greedyMSE>) - Print method for greedyMSE
 
- 
          
print(<summary.caretList>) - Print a summary.caretList object
 
- 
          
print(<summary.caretStack>) - Print a summary.caretStack object
 
- 
          
`[`(<caretList>) - Index a caretList
 
- 
          
summary(<caretList>) - Summarize a caretList
 
- 
          
summary(<caretStack>) - Summarize a caretStack object
 
- 
          
tuneCheck() - Check that the tuning parameters list supplied by the user is valid
 
- 
          
varImp(<caretStack>) - Variable importance for caretStack
 
- 
          
varImp(<greedyMSE>) - variable importance for a greedyMSE model
 
- 
          
wtd.sd() - Calculate a weighted standard deviation