Skip to contents

All functions

add_cross_group_stats()
Add cross-group statistics to the importance table
as.caretList()
Convert object to caretList object
as.caretList(<default>)
Convert object to caretList object - For Future Use
as.caretList(<list>)
Convert list to caretList
autoplot(<caretStack>)
Convenience function for more in-depth diagnostic plots of caretStack objects
c(<caretList>)
S3 definition for concatenating caretList
c(<train>)
S3 definition for concatenating train objects
caretEnsemble()
Combine several predictive models via weights
caretList()
Create a list of several train models from the caret package
caretModelSpec()
Generate a specification for fitting a caret model
caretStack()
Combine several predictive models via stacking
defaultControl()
Construct a default train control for use with caretList
defaultMetric()
Construct a default metric
dotplot(<caretStack>)
Comparison dotplot for a caretStack object
extractMetric()
Generic function to extract accuracy metrics from various model objects
extractMetric(<caretList>)
Extract accuracy metrics from a caretList object
extractMetric(<caretStack>)
Extract accuracy metrics from a caretStack object
extractMetric(<train>)
Extract accuracy metrics from a train model
greedyMSE()
Greedy optimization for MSE
greedyMSE_caret()
caret interface for greedyMSE
permutationImportance()
Permutation Importance
plot(<caretList>)
Plot a caretList object
plot(<caretStack>)
Plot a caretStack object
plot_group()
Plot a group of variable importances
plot_variable_importance()
Plot Variable Importance from a caretStack Model
predict(<caretList>)
Create a matrix of predictions for each of the models in a caretList
predict(<caretStack>)
Make predictions from a caretStack
predict(<greedyMSE>)
Predict method for greedyMSE
prepare_importance()
Prepare variable importance data.table from a caretStack
print(<caretStack>)
Print a caretStack object
print(<greedyMSE>)
Print method for greedyMSE
print(<summary.caretList>)
Print a summary.caretList object
print(<summary.caretStack>)
Print a summary.caretStack object
`[`(<caretList>)
Index a caretList
summary(<caretList>)
Summarize a caretList
summary(<caretStack>)
Summarize a caretStack object
tuneCheck()
Check that the tuning parameters list supplied by the user is valid
varImp(<caretStack>)
Variable importance for caretStack
varImp(<greedyMSE>)
variable importance for a greedyMSE model
wtd.sd()
Calculate a weighted standard deviation